
A cryptographic hash function is a special class of hash function that has
certain properties which make it suitable for use in cryptography. It is a
mathematical algorithm that maps data of arbitrary finite size to a bit
string of a fixed size (a hash function) which is designed to also be a one-
way function, that is, a function which is infeasible to invert.
The only way to recreate the input data from an ideal cryptographic hash
function's output is to attempt a brute-force search of possible inputs to
see if they produce a match.
The input data is often called the message, and the output (the hash
value or hash) is often called the message digest or simply the digest.
From <https://en.wikipedia.org/wiki/Cryptographic_hash_function>

Cryptographic hash functions have many information-security applications, notably in digital
signatures, message authentication codes (HMACs), and other forms of authentication. They
can also be used as ordinary hash functions, to index data in hash tables, for fingerprinting, to
detect duplicate data or uniquely identify files, and as checksums to detect accidental data
corruption. Indeed, in information-security contexts, cryptographic hash values are
sometimes called (digital) fingerprints, message digest or just hash values, even though all
these terms stand for more general functions with rather different properties and purposes.

H(Mi) = h1

011_004 H-Functions HMAC

 011_004 H-Functions HMAC Page 1

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Bit_string
https://en.wikipedia.org/wiki/Bit_string
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/One-way_function
https://en.wikipedia.org/wiki/One-way_function
https://en.wikipedia.org/wiki/Brute-force_search
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Message_authentication_codes
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Fingerprint_(computing)
https://en.wikipedia.org/wiki/Checksum

A cryptographic hash function (specifically SHA-1) at work. A small change in the input (in the
word "over") drastically changes the output (digest). This is the so-called avalanche effect.

Properties

It is quick to compute the hash value for any given finite message.•
A small change to a message should change the hash value so extensively that the new hash value
appears uncorrelated with the old hash value.

•

Security properties presented below.•

Most cryptographic hash functions are designed to take a string of any finite length as input and
produce a fixed-length hash value.
A cryptographic hash function must be able to withstand all known types of cryptanalytic attack.
In theoretical cryptography, the security level of a cryptographic hash function has been defined
using the following properties:

Pre-image resistance
Given a hash value h it should be difficult to find any message M such that h = H(M). This concept
is related to that of one-way function. Functions that lack this property are vulnerable to
first preimage attacks.

•

Second pre-image resistance
Given an input M1 it should be difficult to find (different) input M2 such that H(M1) = H(M2).

•

Functions that lack this property are vulnerable to second-preimage attacks.

Collision resistance
It should be difficult to find any two different messages M1 and M2 such that H(M1) = M(M2).

•

40 Hex numbers = 160 bits

H(Mi) = h1

 011_004 H-Functions HMAC Page 2

https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Avalanche_effect
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Cryptanalysis#Types_of_cryptanalytic_attack
https://en.wikipedia.org/wiki/One-way_function
https://en.wikipedia.org/wiki/Preimage_attack
https://en.wikipedia.org/wiki/Preimage_attack
https://en.wikipedia.org/wiki/Collision_resistance
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/Birthday_attack
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-KatzLindell-2

It should be difficult to find any two different messages M1 and M2 such that H(M1) = M(M2).
Such a pair is called a cryptographic hash collision. This property is sometimes referred to
as strong collision resistance. It requires a hash value at least twice as long as that required for
preimage-resistance; otherwise collisions may be found by a birthday attack.[2]

These properties form a hierarchy, in that collision resistance implies second pre-image
resistance, which in turns implies pre-image resistance, while the converse is not true in
general. [3]

The weaker assumption is always preferred in theoretical cryptography, but in practice, a hash-
functions which is only second pre-image resistant is considered insecure and is therefore not
recommended for real applications.
Informally, these properties mean that a malicious adversary cannot replace or modify the input
data without changing its digest.
Thus, if two strings have the same digest, one can be very confident that they are identical.

Loan contract

 011_004 H-Functions HMAC Page 3

https://en.wikipedia.org/wiki/Collision_resistance
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/Birthday_attack
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-KatzLindell-2
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-FOOTNOTERogawayShrimpton2004in_Sec._5._Implications-3
https://en.wikipedia.org/wiki/Adversary_(cryptography)

Commitment
An illustration of the potential use of a cryptographic hash is as
follows: Alice poses a tough math problem to Bob and claims she has solved it.
Bob would like to try it himself, but would yet like to be sure that Alice is not
bluffing.
Therefore, Alice writes down her solution, computes its hash and tells Bob the
hash value (whilst keeping the solution secret).
Then, when Bob comes up with the solution himself a few days later, Alice can
prove that she had the solution earlier by revealing it and having Bob hash it
and check that it matches the hash value given to him before. (This is an
example of a simple commitment scheme; in actual practice, Alice and Bob will
often be computer programs, and the secret would be something less easily
spoofed than a claimed puzzle solution).

Verifying the integrity of files or messages
Main article: File verification
An important application of secure hashes is verification of message integrity.
Determining whether any changes have been made to a message (or a file),
for example, can be accomplished by comparing message digests calculated
before, and after, transmission (or any other event).
For this reason, most digital signature algorithms only confirm the
authenticity of a hashed digest of the message to be "signed". Verifying the

Illustration

>> sha256('RootHash PrevHash 737327631')
ans = F4AE534CD226FAF799 8C8424B348E020BA80639A687E93A0B8C5130ED C51E6DE
 C51E6DE
>> sha256('RootHash PrevHash 737327632')
ans = B856211DF2EE15E30AB770C1A43CE014ECFE573182AFD885B28D96854DBC5F21
>> sha256('RootHash PrevHash 737327633')
ans = 9C18C764E347A58E57AC3F7A3C2874D5889A0E802699FEA47EEFF8C03BFEDA69

hd28.m - computing 28 bit length h-value in decimal form
h28.m - computing 28 bit length h-value in hexadecimal form
sha2256.m - computing 256 bit length h-value in hexadecimal form

Elementary: Sherlock Holms and docto Watson

 011_004 H-Functions HMAC Page 4

https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Commitment_scheme
https://en.wikipedia.org/wiki/File_verification
https://en.wikipedia.org/wiki/Message_integrity
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Digital_signature

authenticity of a hashed digest of the message to be "signed". Verifying the
authenticity of a hashed digest of the message is considered proof that the
message itself is authentic.
MD5, SHA1, or SHA2 hashes are sometimes posted along with files on
websites or forums to allow verification of integrity.[6] This practice
establishes a chain of trust so long as the hashes are posted on a site
authenticated by HTTPS.

Password verification[edit]
Main article: password hashing
A related application is password verification (first invented by Roger Needham).
Storing all user passwords as cleartext can result in a massive security breach if
the password file is compromised. One way to reduce this danger is to only store
the hash digest of each password. To authenticate a user, the password
presented by the user is hashed and compared with the stored hash. (Note that
this approach prevents the original passwords from being retrieved if forgotten
or lost, and they have to be replaced with new ones.) The password is often
concatenated with a random, non-secret salt value before the hash function is
applied. The salt is stored with the password hash. Because users have different
salts, it is not feasible to store tables of precomputed hash values for common
passwords. Key stretching functions, such as PBKDF2, Bcrypt or Scrypt, typically
use repeated invocations of a cryptographic hash to increase the time required
to perform brute force attacks on stored password digests.
In 2013 a long-term Password Hashing Competition was announced to choose a
new, standard algorithm for password hashing.

Proof-of-work
Main article: Proof-of-work system
A proof-of-work system (or protocol, or function) is an economic measure to
deter denial of service attacks and other service abuses such as spam on a network by
requiring some work from the service requester, usually meaning processing time by a
computer. A key feature of these schemes is their asymmetry: the work must be
moderately hard (but feasible) on the requester side but easy to check for the service
provider. One popular system — used in Bitcoin mining and Hashcash — uses partial
hash inversions to prove that work was done, as a good-will token to send an e-mail.
The sender is required to find a message whose hash value begins with a number of
zero bits. The average work that sender needs to perform in order to find a valid
message is exponential in the number of zero bits required in the hash value, while the
recipient can verify the validity of the message by executing a single hash function. For
instance, in Hashcash, a sender is asked to generate a header whose 160 bit SHA-1
hash value has the first 20 bits as zeros. The sender will on average have to try
219 times to find a valid header.

File or data identifier
A message digest can also serve as a means of reliably identifying a file;
several source code management systems, including Git, Mercurial and Monotone,
 011_004 H-Functions HMAC Page 5

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA1
https://en.wikipedia.org/wiki/SHA2
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-6
https://en.wikipedia.org/wiki/Chain_of_trust
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/w/index.php?title=Cryptographic_hash_function&action=edit§ion=6
https://en.wikipedia.org/wiki/Password_hashing
https://en.wikipedia.org/wiki/Password
https://en.wikipedia.org/wiki/Roger_Needham
https://en.wikipedia.org/wiki/Cleartext
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Precomputation
https://en.wikipedia.org/wiki/Key_stretching
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/Brute_force_attack
https://en.wikipedia.org/wiki/Password_Hashing_Competition
https://en.wikipedia.org/wiki/Proof-of-work_system
https://en.wikipedia.org/wiki/Denial_of_service
https://en.wikipedia.org/wiki/Bitcoin_mining
https://en.wikipedia.org/wiki/Hashcash
https://en.wikipedia.org/wiki/Source_Code_Management
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Mercurial_(software)
https://en.wikipedia.org/wiki/Monotone_(software)
https://en.wikipedia.org/wiki/Sha1sum
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Filesharing

several source code management systems, including Git, Mercurial and Monotone,
use the sha1sum of various types of content (file content, directory trees, ancestry
information, etc.) to uniquely identify them. Hashes are used to identify files
on peer-to-peer filesharing networks.

Pseudorandom generation and key derivation
Hash functions can also be used in the generation of pseudorandom bits, or
to derive new keys or passwords from a single secure key or password.

As of 2009, the two most commonly used cryptographic hash functions
were MD5 and SHA-1. However, a successful attack on MD5 broke Transport
Layer Security in 2008.

In February 2005, an attack on SHA-1 was reported that would find collision in about
269 hashing operations, rather than the 280 expected for a 160-bit hash function. In
August 2005, another attack on SHA-1 was reported that would find collisions in
263 operations. Though theoretical weaknesses of SHA-1 exist,[14][15] no collision (or
near-collision) has yet been found. Nonetheless, it is often suggested that it may be
practical to break within years, and that new applications can avoid these problems by
using later members of the SHA family, such as SHA-2.

However, to ensure the long-term robustness of applications that use hash
functions, there was a competition to design a replacement for SHA-2.
On October 2, 2012, Keccak was selected as the winner of the NIST hash function
competition.
A version of this algorithm became a FIPS standard on August 5, 2015 under the
name SHA-3.

HMAC - H Message Authentication Code

Use in building other cryptographic primitives: symmetric e-signature realization
Hash functions can be used to build other cryptographic primitives.

SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash
functions designed by the United States National Security Agency (NSA).[3]

From <https://en.wikipedia.org/wiki/SHA-2>

SHA-2 includes significant changes from its predecessor, SHA-1.
The SHA-2 family consists of six hash functions with digests (hash values)
that are 224, 256, 384 or 512 bits:
SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.

No needed

No needed

 011_004 H-Functions HMAC Page 6

https://en.wikipedia.org/wiki/Source_Code_Management
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Mercurial_(software)
https://en.wikipedia.org/wiki/Monotone_(software)
https://en.wikipedia.org/wiki/Sha1sum
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Filesharing
https://en.wikipedia.org/wiki/Pseudorandom
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-14
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-15
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standards
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/SHA-2#cite_note-3
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Cryptographic_hash_function#message_digest

Keyed-hash message authentication code (HMAC) is a specific type of message authentication code (MAC)
involving a cryptographic hash function (hence the 'H') in combination with a secret cryptographic key.
As with any MAC, it may be used to simultaneously verify both the data integrity and the authentication of
a message.
Any cryptographic hash function, may be used in the calculation of an HMAC.
The cryptographic strength of the HMAC depends upon the cryptographic strength of the underlying hash
function, the size of its hash output, and on the size and quality of the key.

HMAC - H Message Authentication Code

HMAC based e-signature

Use in building other cryptographic primitives: symmetric e-signature realization
Hash functions can be used to build other cryptographic primitives.
For these other primitives to be cryptographically secure, care must be taken to
build them correctly.
Message authentication codes (MACs) (also called keyed hash functions) are often
built from hash functions. HMAC is such a MAC.

k

Telecommunik

 011_004 H-Functions HMAC Page 7

https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_key
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Cleartext
https://en.wikipedia.org/wiki/Cryptographic_strength
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/HMAC

Hash functions based on block ciphers
There are several methods to use a block cipher to build a cryptographic hash
function, specifically a one-way compression function.
The methods resemble the block cipher modes of operation usually used for
encryption.
Many well-known hash functions, including MD4, MD5, SHA-1 and SHA-2 are built
from block-cipher-like components

>> sha256('RootHash PrevHash 737327631')
ans = F4AE534CD226FAF7998C8424B348E020BA80639A687E93A0B8C5130EDC51E6DE
>> h28('RootHash PrevHash 737327631')
ans = C51E6DE
>> hd28('RootHash PrevHash 737327631')
ans = 206694110
>> dec2bin(ans)
ans = 1100010100011110011011011110
>> dec2hex(206694110)
ans = C51E6DE

Till this place

Telecommunik

 011_004 H-Functions HMAC Page 8

https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/One-way_compression_function
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/MD4
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/SHA-2

HMAC can be constructed form the block cipher using cipher block chaining
(CBC) mode of operation.

CBC-MAC

Cipher block chaining message authentication code (CBC-MAC) is a
technique for constructing a message authentication code from a block
cipher. The message is encrypted with some block cipher algorithm in CBC
mode to create a chain of blocks such that each block depends on the proper
encryption of the previous block.
This interdependence ensures that a change to any of the plaintext bits will
cause the final encrypted block to change in a way that cannot be predicted
or counteracted without knowing the key to the block cipher.
From <https://en.wikipedia.org/wiki/CBC-MAC>

B1 B2 BN

CNC2C1

 011_004 H-Functions HMAC Page 9

https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/CBC-MAC

 011_004 H-Functions HMAC Page 10

